Hierarchical clustering for harmonized data
cluster.hc.Rd
This function performs hierarchical clustering on the harmonized training data
using euclidean, pearson, or spearman distance measures.
It adds the clustering results to the cluster.result
slot.
Arguments
- object
A
precision
object containing harmonized training data in the slotharmon.train.data
.- k
Integer. Number of clusters. If NULL or not given, uses the number of unique labels in training data.
- distance
Distance measure to use for clustering. Options are "euclidean", "pearson", or "spearman". Default is "euclidean".