Random Forest Classification
classification.ranfor.Rd
This function applies Random Forest classification to the harmonized data in the input precision object containing. It supports two thresholding methods: cross-validation to optimize the tuning parameter or using default parameters without tuning.
Arguments
- object
A precision object containing harmonized data. Must contain the slots
harmon.train.data
with harmonized training data andharmon.test1.data
andharmon.test2.data
with harmonized test data.- threshold_method
A character string specifying the thresholding method. Use
"cv"
for cross-validation to determine the optimal k, or"none"
to use default parameters without tuning.- kfold
An integer specifying the number of folds for cross-validation. This parameter is only used if
threshold_method
is set to"cv"
.